Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(47): 54446-54457, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37970629

RESUMO

Nonprecious transition-metal phosphides (TMPs) are versatile materials with tunable electronic and structural properties that could be promising as catalysts for energy conversion applications. Despite the facts, TMPs are not explored thoroughly to understand the chemistry behind their rich catalytic properties for the water splitting reaction. Herein, spiky ball-shaped monodispersed TMP nanoparticles composed of Fe, Co, and Ni are developed and used as efficient electrocatalysts for hydrogen and oxygen evolution reaction (HER, OER), and overall water splitting in alkaline medium; and their surface chemistry was explored to understand the reaction mechanism. The optimized Fe0.5CoNi0.5P catalyst shows attractive activities of HER and OER with low overpotentials and Tafel slopes, and with high mass activities, turnover frequencies, and exchange current densities. When applied to overall water splitting, the electrolyzer Fe0.5CoNi0.5P||Fe0.5CoNi0.5P cell can reach a 10 mA cm-2 current density at cell voltages of only 1.52 and 1.56 V in 1.0 M and 30 wt % KOH, respectively, much lower than those of commercial IrO2||Pt/C. The optimized electrolyzer with sizable numbers of chemically active sites exhibits superior durability up to 70 h and 5000 cycles in 1.0 M KOH and can attain a current density as high as 1000 mA cm-2, showing a class of efficient bifunctional electrocatalysis. Experimental and density functional theory-based mechanistic analyses reveal that surface reconstruction takes place in the presence of KOH to form the TMP precatalyst, which results in high coverage of oxygen active species for the OER with a low apparent activation energy (Ea) for conversion of *OOH to O2. These also evidenced the thermoneutral adsorption of H* for the efficient HER half-reaction.

2.
Nanoscale ; 14(35): 12668-12676, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947047

RESUMO

Understanding the magnetic response of electrons in nanoclusters is essential to interpret their NMR spectra thereby providing guidelines for their synthesis towards various target applications. Here, we consider two copper hydride clusters that have applications in hydrogen storage and release under standard temperature and pressure. Through Born-Oppenheimer molecular dynamics simulations, we study dynamics effects and their contributions to the NMR peaks. Finally, we examine the electrons' magnetic response to an applied external magnetic field using the gauge-including magnetically induced currents theory. Local diatropic currents are generated in both clusters but an interesting global diatropic current also appears. This diatropic current has contributions from three µ3-H hydrides and six Cu atoms that form a chain together with three S atoms from the closest ligands resulting in a higher shielding of these hydrides' 1H NMR response. This explains the unusual upfield chemical shift compared to the common downfield shift in similarly coordinated hydrides both observed in previous experimental reports.

4.
J Chem Phys ; 154(20): 204303, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241155

RESUMO

The magnetic response of valence electrons in doped gold-based M@Au8L8 q superatoms (M = Pd, Pt, Ag, Au, Cd, Hg, Ir, and Rh; L = PPh3; and q = 0, +1, +2) is studied by calculating the gauge including magnetically induced currents (GIMIC) in the framework of the auxiliary density functional theory. The studied systems include 24 different combinations of the dopant, total cluster charge, and cluster structure (cubic-like or oblate). The magnetically induced currents (both diatropic and paratropic) are shown to be sensitive to the atomic structure of clusters, the number of superatomic electrons, and the chemical nature of the dopant metal. Among the cubic-like structures, the strongest aromaticity is observed in Pd- and Pt-doped M@Au8L8 0 clusters. Interestingly, Pd- and Pt-doping increases the aromaticity as compared to a similar all-gold eight-electron system Au9L8 +1. With the recent implementation of the GIMIC in the deMon2k code, we investigated the aromaticity in the cubic and butterfly-like M@Au8 core structures, doped with a single M atom from periods 5 and 6 of groups IX-XII. Surprisingly, the doping with Pd and Pt in the cubic structure increases the aromaticity compared to the pure Au case not only near the central atom but encompassing the whole metallic core, following the aromatic trend Pd > Pt > Au. These doped (Pd, Pt)@Au8 nanoclusters show a closed shell 1S21P6 superatom electronic structure corresponding to the cubic aromaticity rule 6n + 2.

5.
Nat Commun ; 12(1): 2477, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931646

RESUMO

Understanding magnetically induced currents (MICs) in aromatic or metallic nanostructures is crucial for interpreting local magnetic shielding and NMR data. Direct measurements of the induced currents have been successful only in a few planar molecules but their indirect effects are seen in NMR shifts of probe nuclei. Here, we have implemented a numerically efficient method to calculate gauge-including MICs in the formalism of auxiliary density functional theory. We analyze the currents in two experimentally synthesized gold-based, hydrogen-containing ligand-stabilized nanoclusters [HAu9(PPh3)8]2+ and [PtHAu8(PPh3)8]+. Both clusters have a similar octet configuration of Au(6s)-derived delocalized "superatomic" electrons. Surprisingly, Pt-doping in gold increases the diatropic response of the superatomic electrons to an external magnetic field and enhances the aromaticity of [PtHAu8(PPh3)8]+. This is manifested by a stronger shielding of the hydrogen proton in the metal core of the cluster as compared to [HAu9(PPh3)8]2+, causing a significant upfield shift in agreement with experimental proton NMR data measured for these two clusters. Our method allows the determination of local magnetic shielding properties for any component in large 3D nanostructures, opening the door for detailed interpretation of complex NMR spectra.

6.
Chemistry ; 26(38): 8465-8470, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302026

RESUMO

The conventional synthetic methodology for atomically precise gold nanoclusters by using reduction in solution offers only the thermodynamically most stable nanoclusters. Herein, a solubility-driven isolation strategy is reported to access a metastable gold cluster. The cluster, with the composition of [Au9 (PPh3 )8 ]+ (1), displays an unusual, nearly perfect body-centered cubic (bcc) structure. As revealed by ESI-MS and UV/Vis measurements, the cluster is metastable in solution and converts to the well-known [Au11 (PPh3 )8 Cl2 ]+ (2) within just 90 min. DFT calculations revealed that although both 1 and 2 are eight-electron superatoms, there is a driving force to convert 1 to 2 as shown by the increased cohesion and larger HOMO-LUMO energy gap of 2. The isolation and crystallization of the metastable gold cluster were achieved in a biphasic reaction system in which reduction of gold precursors and crystallization of 1 took place concurrently. This synthetic protocol represents a successful strategy for investigations of other metastable species in metal nanocluster chemistry.

7.
ACS Omega ; 3(2): 2130-2140, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458519

RESUMO

The Marcus-Hush theory has been successfully applied to describe and predict the activation barriers and hence the electron-transfer (ET) rates in several physicochemical and biological systems. This theory assumes that in the ET reaction, the geometry of the free Gibbs energy landscape is parabolic, with equal curvature near the local minimum for both reactants and products. In spite of its achievements, more realistic models have included the assumption of the two parabolas having not the same curvature. This situation is analyzed by the Nelsen's four-point method. As a benchmark to compare the Marcus-Hush approximation to a precise calculation of the excitation energy, we studied the non-ET process of the electronic excitation of the aluminum dimer that has two local minima (3∑g - and 3∏u electronic states) and allows to obtain analytically the Marcus-Hush nonsymmetric parameters. We appraise the ability of the Marcus-Hush formula to approximate the analytical results by using several averages of the two reorganization energies associated with the forward and backward transitions and analyze the error. It is observed that the geometric average minimizes the relative error and that the analytical case is recovered. The main results of this paper are obtained by the application of the Nelsen's four-point method to compute the reorganization energies of a large set of potential π-conjugated molecules proposed for organic photovoltaic devices using the above-mentioned averages for the Marcus-Hush formula. The activation energies obtained with the geometric average are significantly larger for some donor-acceptor pairs in comparison with the previously employed arithmetic average, their differences being suitable for experimental testing.

8.
J Phys Chem A ; 119(49): 11941-8, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26583532

RESUMO

Stern-Gerlach (SG) experiments on aluminum clusters indicate that some small-sized aggregates exhibit a deflection signal consistent with the existence of magnetic moments. However, in the particular case of Al6 and Al8 clusters, electronic structure investigations show ambiguity on the 0 K ground spin state. In this work extensive computations of the electronic structure have been carried out in order to determine the ground state of these structures. Electron correlation has been introduced at MP2, MP4, and CCSD(T) theory level as well as by DFT computations with different density functionals. DFT-based Born-Oppenheimer molecular dynamics results at different simulation temperatures complete this investigation. One of our main conclusions is that singlet spin states are systematically the more stable configuration at 0 K. These Al clusters exhibit almost degenerate electronic structures at singlet and triplet spin states. The geometries are similar, and the paths connecting both structures allow an intersystem crossing through a spin-orbit coupling mechanism, indicating a dynamical interchange of both spin states at finite temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...